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EXECUTIVE SUMMARY

OBJECTIVE

The objective of this work was to examine the theoretical formulation of shell membrane
waves to determine how a computationally efficient, yet faithful, model could be realized.

RESULTS

Faithful replication of the behavior may be obtained from a relatively simple set of
expressions. These produce tremendous computational savings.

RECOMMENDATIONS

The proposed model should be implemented as soon as feasible.
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INTRODUCTION

Accurate target models capable of predicting the echo time history of submarines and
surface ships are essential tools for antisubmarine warfare and ship vulnerability studies. A
realistic model must account for the many highlights of a target as well as the conditions of
insonification. The model must predict the proper highlight amplitude and phase as well as
temporal and spectral behavior. Thus, physical scattering mechanisms must be properly
identified and incorporated into the model.

Over the past 30 years, target models developed at Space and Naval Warfare (SPAWAR)
Systems Center, San Diego (SSC San Diego) have proven to be an invaluable asset for
developing signal-processing algorithms and engagement simulations. These models have
been exported throughout the Navy community. Previous formulations of the SSC San Diego
target models, dictated by past requirements and test scenarios, have neglected elastic wave
effects. This restriction simplified the numerical implementation (as well as theoretical
development) considerably. This restriction serves well for high-frequency and even
narrowband mid-frequency applications. However, for broadband processing schemes, more
sophistication is required.

Efforts have been undertaken, e.g., interacting ribs (Lengua, 1997). This report examines
the modeling of shell membrane waves. We will begin with general background information
since many interested parties are unfamiliar with the subject. Then we will discuss the
modeling details.

BACKGROUND

MEMBRANE SHELL THEORY

We will take the approach of beginning with the simplest shell theory and then proceed
with more complicated formulations. The theory discussed in this section is known as
membrane shell theory. We will follow the development of Graff (1975, pp. 259-262). Only
forces, both normal and shear, acting in the midsurface of the shell are considered. The
transverse shear forces and the bending and twisting moments are assumed negligible. Thus,
the shell behaves as a curved membrane.

Consider a cylindrical shell of radius a, thickness 4, and density p . We will use

cylindrical coordinates (r,6, z). The displacement components are w, v, and u in the

radial, tangential, and longitudinal directions. Let us examine the forces (membrane stresses
N and applied load g ) acting on a differential element of the shell. The equations of motion

in the longitudinal, tangential, and radial directions are, respectively,
oN, ), 3%u

7 = pad@dzh—-
26 ]d P o

—Nzad6+(Nz + a;vz dz}-d@—N&dz+(N& +

74

oN N 2
—N,dz+| N, +—2%d0 {dz—N ,ad6+| N , + — pd6 = padGdzh—
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do oN do d’w
-N, sz—(Na + 899 d@)——z—dz+qad6klz = pad@dzh ¥

These may be reduced to
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The membrane stresses (N +Ng, Ny, N, ) are obtained by integrating the usual stresses

(Zz DI PN ) across the shell thickness. From Hooke’s law, we have

> =

z 1_02

(e, +o0g,)
E
Zy =m(€e +0¢,)

__E
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where £_ and £, are the axial and tangential strains of the middle surface of the shell

Tez =Tz€ =G

element and j =}, =1}, is the shear strain. E is Young’s modulus and o is Poisson’s
ratio. For the assumption of membrane-type stresses only, (21Z 1 2grTgT 5 ) are constant
across the shell thickness. So then

z

N :—EE—Z—(sZ +0€,)
1-0

N, = Eh'2 (e, +o0z,)
1-0
Eh i
N, =N, ,=—v .
T 2(1+a)7/

Let us now consider the dynamics of the deformation. For the present conditions, these are
relatively simple. In the axial direction

e =
z az'




Now g, = ds —ds , where ds = ad6 is the initial arc length. The arc length after

deformation is ds” = (w+a)d6 + g—; d@ . Therefore

= (we ).

+ _—
a 00
The expression for the shear strain may be obtained by considering small changes in angle of

the sides dz and ad6 of the element due to ? and 8_: The result is
74

y=P 1o
dz adb
The membrane stresses are then

N, = Eh _8_u+g w+a—v
1-0%|dz a 06

Eh [w 10v 8ui|

N, = il o
® 1-0%*la ad6 0z
Eh (1-0\Ydv 1du
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The equations of motion may finally be written as
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where ¢, = - is the thin-plate speed.
pl-o

From this last equation, we see that the normal displacement of the shell, w, is coupled to
the two “in-plane” displacements, # and v . For flat plates, the normal displacement is
independent of the in-plane displacements.



DONNELL SHELL THEORY

Formulation

The analysis of a shell including bending effects on the deformation, as well as bending
moments and shear forces in the equations of motion, yields considerably more complex
expressions than those in the preceding section. The Donnell formulation (Kraus, 1967,

p- 297) includes simplified versions of these effects. The approximations are related to the
influence of transverse shear forces on tangential motion and to the expressions for curvature

and twist. The results are equations very much like the membrane equations of motion. There
2

is only an additional term of — f—2V4w on the left side of the radial displacement equation

284w+2 o'w +La4w (o ou 1 91_}_1—0’2 _1 o’w
o 9°060” a 6° 20 En 1 o

2
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a

—%-—ﬂ{a

h2

where f° = a2
a

We wish to study the propagation of harmonic waves in the shell. These will have an
angular frequency @ and wavenumber k . Note that, since we are using a “thin-shell”
analysis, it is required that kh << 71, or equivalently fka << 1. For high frequencies, a thick-

plate analysis will be necessary (Junger and Feit, 1986, pp. 214-215). Rather than begin with
the general solution, it is illustrative to consider some special cases.

Case of 6-Independent Motion

One of the most important special cases arises from considering motion independent of 6 .
Here the equations of motion are (also set g =0)

’u (oc\ow 1 0%u
EYeILl Rl E ey
0z a)oz c, ot

2 )o> 2o

(1—0\8% 1 o%v

w 2
a

9w _(o)ou_ 19w
ot \ajoz o

Note that the equation for tangential motion has uncoupled from the remaining equations.
It may be written as

1o
dz> ¢’ o’




where ¢, = \/E is the shear speed. This is a one-dimensional equation describing the purely
P

torsional motion of the shell. The propagation speed is the same as for such waves in a solid
circular rod (Graff, 1975, p. 263).

Consider now the coupled equations in # and w. Let u = Ue'®) and w=We'® ) A
solution requires

2

Lk ixZ
c a [Ujl
, , =0 .
g L g W
a Cp a

The determinant of coefficients gives the frequency equation
[+ ka}f + B2 (ka) @7 + |- 0% + B (ka) Jka =0
where Q = _c_z_w is the normalized frequency. In terms of the phase velocity ¢ = —i)- , we have
' c
4
)4 2
c 2 2
] gt sty | £ ) 19 gy =0

2 L\

[CP y, I: ( ) ( )
The long- and short-wavelength limits are easily obtained. At long wavelengths (ka — 0)

2] =] oo

"/ Py

E
so one solution is ¢ — ‘[: =c,, the longitudinal bar speed (Graff, 1975, p. 264). In this

case,

—‘ o< ka , so the motion is primarily longitudinal (as expected). Another solution is

Cp
¢ —> — . Here
ka

E‘ o< ka , the motion is primarily radial.

At short wavelengths (ka — o)

wF {cq -F [cq +B =0



so one solution is ¢ — ¢,,. Then W =0, the motion is primarily longitudinal (quasi-

compressional wave). Another solution is ¢ —> fkac, . Here

—q—l oc L , the motion is
Wi ka
primarily radial (quasi-flexural wave).

Figure 1 shows the dispersion curves when o = 0.3 and # =0.01. Figure 2 shows ]U ]
for the two branches (normalized such that [U ]2 + |W]2 =1).

25 r ]

c/cp

18 4

Figure 1. Example of dispersion curves for 6-independent motion.
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Figure 2. Example of longitudinal displacement for 8-independent motion.

Case of z-Independent Motion

Another important special case arises from considering motion independent of z . Here
the equations of motion are (also set g = 0)

(1-—0‘) 0%u _Lazu

2qa% )86* & ot

2
P

(_1_)_"22.1’_+(J._)_232_i§f2
a* )06* \a* )80 < o’

14

w ., 1 8% (1)&; 1 8*w

i 7 o \d?Jee o o

Note that the equation for longitudinal motion has uncoupled from the remaining equations.
It may be written as

d*u =_.1__62u
o(agy o} o’

so that again disturbances propagate at the shear speed.

Consider now the coupled equations in v and w . Let v = Ve'®™®) and w = We't=6-),

Now we must have our first discussion of boundary conditions. These are namely continuity
of the displacements for & and &+ 27

w0 +27)= (@)



and similarly for w. Thus xa = n, where n is an integer (= 0). Therefore, only discrete
modes exist. Note that we must have fn <<1 for the development to be valid.

A solution requires

‘——2—""( IK—
c a {V}
P ) =0 .
. O @ 1 w
—ik— ———-pfa’x*
a c a

p

The determinant of coefficients gives the frequency equation
Q* —ll-i—n2 +ﬂ2n4k22 +pB%n® =0 .
In terms of the phase velocity
4 2
c 1 c
[—W —[l+—2+ﬁ2n2}[-—w +p°n* =0 .
c n c
Py Py

For the n =0 mode, one solutionis ¢ — 0. Here @ =0 and W =0, so it is a trivial

c
solution. Another solution is ¢ — o . In this case, @ =—2 and V =0, which is a pulsating
a

cylinder.
At short wavelengths (n — oo ), one solution is ¢ — ¢,,. Then W =0, the motion is

primarily tangential (quasi-compressional wave). Another solution is ¢ — finc . Here,

1
oc —, the motion is primarily radial (quasi-flexural wave).
n

v
w
Figure 3 shows the dispersion curves when fi = 0.01. These are plotted as continuous

functions of » as a guide. Figure 4 shows |V| for the two branches (normalized such that

VI +Ww| =1).
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Figure 4. Example of tangential displacement for z~independent motion.

Forced Planar Vibrations

Let us again consider z-independent motion but now with an applied load that is
symmetric in &.




g=rf@) " .

We may represent f(6) as a Fourier expansion

f(9):§f,, cos(n0)

where
fo =2 [ £ @)cos(np)ig
T 0

with £, =1 and £, =2 for n >1.

We will assume the displacements are
u=0

v= iVn sin(n6 )™

n=1
w= iWn cos(n@e™ .
n=1

The equations of motion, after using the trigonometric orthogonality relations

8;[ j‘cos(mgb)cos(mp)dq) =0,

-

;1[— Tsin(m¢)sin(n¢)d¢ =00 >

are then

10




Thus,

2 e

a 3 nf, sin(n@)e™
phc’ = Q* - (1 +n’+ f°n )Qz + p*n®

V=-
p n=l

_a i (QZ -n’ )f,, cos(nf)e ™
phc: S Q" - (1+ n* + B*n )92 + Bn®

w =

These are divergent at the modal frequencies because dissipation has been ignored.

Later it will be convenient to express the response in terms of the modal mechanical
impedance

ipc, h Q* - (1+n* + f7n*)Q + B0

Z'(Q)=-

@) Q a Q*—n?

Therefore,
W _ i nf, sin(n@)e
ot o (92 -n’ )Z,f
w _ i f, cos(n@)e
ot = VA

so that Z, is the ratio of the modal pressure on the outer shell surface to the modal radial
velocity.

Note that we have been considering the in vacuo vibrations of the shell. A shell vibrating
in a fluid will radiate into the fluid. The radiation loading is significant and will be discussed
later.

General Motion

In considering general motion, let
0= Uei(n0+kz—(a)

y= Vei(n€+kz—at)

w= Wei(n0+kz—wt)

Solution of the equations of motion (with g = Q) requires

11



The determinant of coefficients gives the frequency equation

Q°-AQ +AQ*—A, =0

where the parameters are

A, = 1+3—;0-(ksa)2 + B2 (k,a)
4 =122 [0 + (k) +20+ 0NkaY 222 B )

1o =52l 0* ) + Y]

and we have defined a helical wavenumber

Q
The phase velocity is then ALy Here, we require fk a <<1 for the development to be

c, ka

valid.

For the n =0 mode, we retrieve the 0-independent results. Similarly, if k =0, we
retrieve the z-independent results.

Let us consider the situation when k_a >>1. The phase velocity equation may be written

6 4 2
f_} 3¢ _C_) 1= LW By LY
c, 2 |c 2 |c 2
/ 7y Py

The solutions are then ¢ = ¢, ¢ — Pk ac ,-and ¢ —>c . To examine the displacements,

as

we must know the relative contributions of ka and n . Let us first suppose ka >> n . For

w| n’ o L : :
—| oc :— , the motion is primarily longitudinal (quasi-compressional
a

n
oc — and

C-—)Cp,

12




wave). For ¢ — fkac , |— and the motion is primarily radial
» p y

)2 ’

. W e
(quasi-flexural wave). For ¢ = c,, |—| o< — )2 , so the motion is primarily
ki ka)’ .
tangential. Now suppose n >>ka.For ¢ > ¢, —(-]—‘ o 2 and 'V‘ oc ( a) , the motion is

n n

. . . . ka Vi 1
primarily tangential (quasi-compressional wave). For ¢ — finc,,, |— e —- and W oc —,
n

and the motion is again primarily radial (quasi-flexural wave). For ¢ = ¢, |—{ o< E and

n

{W —-, the motion is primarily longitudinal.

The frequency equation is a cubic equation in Q* and may therefore be solved using the
standard method (Gautschi, 1965, p. 17)]. Let

1 1,
=—A —=
Q 34 9A2
R:-l(AA —3Ao)+iA3
6 1472 27 2

If Q°+R? >0, there is one real root and a complex conjugate pair. If 9°> + R*> =0, all

roots are real and at least two are equal. If Q3 + R? <0, all roots are real and distinct. Let

y
S, =[Ri(Q3 +R2W} ’
Then

Qf=S1+SZ+%A2

1 1 NED

Q2 =—5(S1 +S2)+§A2 +7:(s1 -S5,)
1 1 3

Q2 =-—E(s1 +SZ)+§A2 —gi(s1 -5,) .

Once the frequencies have been evaluated, the phase velocities can easily be determined.
The displacements may be calculated from the expressions

13



o _%(1_0)(2”)(@)2 —%(l—o')nz

4
Uk g (o)) + 2
2 2 1 2
H,_zin ~ (ka) —5(1-a)n o ¥
U oka 20 U

along with the normalization |U/ [i + 'V!2 +|W[2 =1,

Let us consider some examples. We will again let o =0.3 and § =0.01. It is useful to

review the 7 =0 case. Figure 5 shows the frequency roots, while figure 6 shows the
corresponding phase velocities. Note the crossover of roots 2 and 3. The displacement
amplitudes for the three roots are shown in figures 7 through 9. The tangential displacement
does not appear because it is decoupled from the others. The behavior of the » = 1 caseis
shown in figures 10 through 14, while that of the n =2 case is shown in figures 15

through 19.

5 1 T r T
o | [ = 51
— ROOT3

4 i
35 +
3}

¢ 25 F ,
2 .
15 | R
1
05

Y 0.5 1 1.5 2 2.5 3 35 4 4.5 5
ka

Figure 5. Frequencies for the n = O case.
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Figure 7. Displacements for root 1 of the n = 0 case.
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Figure 8. Displacements for root 2 of the n = O case.
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Figt.ire 9. Displacements for root 3 of the n = 0 case.
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Figure 10. Frequencies for the n = 1 case.
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Figure 11. Phase velocities for the n = 1 case.
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Figure 12. Displacements for root 1 of the n = 1 case.
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Figure 13. Displacements for root 2 of the n = 1 case.
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Figure 14. Displacements for root 3 of the n = 1 case.
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Figure 15. Frequencies for the n = 2 case.
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Figure 17. Displacements for root 1 of the n = 2 case.
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Figure 18. Displacements for root 2 of the n = 2 case.
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Figure 19. Displacements for root 3 of the n = 2 case.

21




Forced Vibrations When =0

Let us consider forced vibrations from an applied load, which again is symmetric in 6 but
now has a harmonic variation in z

q=f@)*

with

£6)=Y £, cos(n6).

n=0
For simplicity, we will assume f =0.
Let
u=y"U, cos(n@ ')

n=0

v= iVn sin(n@ ")
=1

w= iWn cos(n@)'®,

n=0

The equations of motion (after using the trigonometric orthogonality relations) are then

Q7 - (ka) —l;o—-n2 i1+anka ioka | [ ]
2 U, 0
—i1+ 9 nka Q’ —1_—0.(ka)2 -n*  -n ||V, |= 0
_iota ., Qi1 W] |-
L _ phe’
Therefore,
0+ 2 n? -2 (kay
. 2 ilkz—ax
u=ioka c2 25 A Yoy AR A, cosfa}
2 Qz_l—onz_(2+cJX1—o)(ka)2
_ a S 2 2 : i(kz—ax)
v=— nf, sin(n@
phc’, Z{ QF-AQ"+AQ% - A, (o)
3-
2 e - kaf @+ ka) |
w=- £, cos(n@)e’ ).

phc = Q° —A294 +AQ° —A0
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Here,

A =1+ 2% (ko)
2
A = 1-70 [(ksa)4 +(ka) +20+ O'Xka)z]

Ay =—(1-0" Yka) .
It may be easily verified that, as k — 0, u — 0 and our earlier results for v and w are
recovered.
Thus, the modal mechanical impedance is
Py b 6—A2Q4+A92—A0

& “[92 E%a) [0 - o]

Z: (Q,ka)= -

and

, 1l-0 2 1-0" ,
B S — kA S st
ot r |:Qz _%g(ksa)z][gz _ (ksa)z] Z,

l1-o 1-o?
W< Qz——(ksa)z———(kaf nf, sin(n@)e’ @)
af H[sr——(k )2}[92 kay] %
)ei(kz—ax)

ow f, cos(n®
R

Again, note that these are the in vacuo vibrations of the shell.
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FINITE-LENGTH SHELLS
For a cylindrical shell of finite length, the specification of boundary conditions is needed. The

1 .
simplest set is that of a simply supported shell. If the ends are located at z = iEL , the displacement

boundary conditions are (Junger and Feit, 1986, p. 218)

The motion of the shell may be described by
u=yU,,cos(n@)sin(k,z )™

v=Y V,,sin(n8)cos(k,z)e ™"

w=Y W, cos(nd)cos(k,z )"

where k, = (2m + 1)% . A solution with the cos(n6 ) and sin(n6 ) factors interchanged would also

be valid.
For reference, the boundary conditions for a shell that is clamped at its ends are
1
u=v=w=§—ui=0 for z=*—L.
0z 2

RADIATION LOADING

A submerged shell undergoing vibrations will radiate into the surrounding fluid. As usual, we
will assume a time dependence e . Let P(r,6,7) denote the radiated pressure field, and let p, be

the density of the fluid and ¢, be the wave speed in the fluid. In the fluid, P must satisfy the
Helmbholtz equation
VZP+k*P=0

a . . . ..
where k = — . In cylindrical coordinates, this is
Co

10 10 @
or ror r?a6* 97’

+——t +—}P+k2P=O.

The standard solution is to use separation of variables. Let P(r,6,z)= R(r)®(6)Z(z). Then

+ik +in6
Z=e"" @=¢"", and
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Therefore, R = AJ, (ﬂk2 -k r)+ BY, (1/ kK’ -k r), where J_(x) and Y, (x) are Bessel and Weber

functions (Gautschi, 1965, p. 358).

The boundary condition relating P to the shell motion is
| __ dw
or ® o

r=a

This represents continuity of the normal component of the force at the boundary. Since a fluid does
not support shear motion, the tangential components of the force may be discontinuous.

The radial displacement will be written as in the previous section. Since we desire a solution in
the form of an outgoing wave, the pressure field is expressible as

P(r;a, 2,t)= EA,MHS)(\/kZ -k r)cos(ne)cos(kmz)e'”"
where H S)(x) is the Hankel function of the first kind (Gautschi, 1965, p. 358). A,,, is determined

from the radial boundary condition

A I pOWmn
" 2O -k2a)

and the prime denotes differentiation with respect to the argument.

where W,,, = —@°W,

mn?

Note that the surface pressure obtained from these equations may be written as
P(a.0,2,t)= Y Z W,, cos(nf)cos(k,z)e ™"
m,n

where

o __iPyCok H,fl)(qsz—kia)
" k-2 B0k —k2a)

is the modal radiation impedance. Thus, no energy is radiated when k <k, .

The Hankel functions may be approximated by their Debye asymptotic expansions (Gautschi,
1965, p. 366).

142 cot? y
Hlfl,Z)(Z) ~ 2 1 T 3 . eii[z(sin y—ycosy)—z]
msmy 8zsiny
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T 2
i 1+—cot /4 +i| z(siny—ycos y )2
H;(1,2)(Z)zi_i [2smy [+3i—9 e—[( r-r 7%4]
. Z

8zsiny

in which ¥ = cos™ (K) and 0 <Re() )< 7. These expansions are generally valid for |z| > M and

2y
22
Iz—v’ >|V|%. Note that sin}/=——§—:~v—. Thus,
Z
LLERICO R S DS U S
H‘:(LZ)(Z) < lzz_vz 2 (zz_vz)l )

It is worth commenting that some authors ignore the cot” ¥ term in the Debye expansions and
consequently have an invalid approximation for the ratio (Rumerman, 1996).

Now, if ,/k2 —k;a >>n,
Z = p,c k
mn 0O 0_J2:7'
k*—k,

The case of z-independent motion may be obtained by simply setting k,, = 0. Then,

;. H ka)
Z, =1Pocom
and, if ka>>n,
Z, = Pycy

the specific acoustic impedance of the fluid.

The effect of radiation loading on forced vibrations may be easily determined. From the equation
for in vacuo vibrations (generalized to axial wavenumbers k, ) W, = f, / Z, . Inafluid, f, is

replaced by f, — P, , where the minus sign accounts for the direction of the force. Now, as

n 9
discussed earlier, P,, = Z W, so that
o
— fmn - ZmnWmn
mn s
Zmn

or

fmn

" Tt Zp
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Thus, the total (or shell-fluid system) modal impedance Z_ is the sum of the shell and radiation
modal impedances, as might have been expected.

SCATTERING OF PLANE WAVES
Normal Incidence

Incident Wave. Let us consider a plane acoustic wave, given by P, (x, Y, t) =F, exp[i(kx —~ alt)],
normally incident upon an infinite cylindrical shell in a fluid. In cylindrical coordinates

}),- (r’e’t): Poei(krcosé’—-wt) .

Note that 6 =0 corresponds to the forward-scattering direction. We may represent P, as a Fourier
expansion (Gautschi, 1965, p. 361).

P(.8,0)= B £,i" ] (i )oos(n6).
n=0
Note that since J_, (z)=(~1)'J,(z), we may write

P(.0.1)=Pe™ 3 i, (kr)cos(n8)

n=——co

and eliminate the &, factor. It is often useful to use a representation in terms of Hankel functions

P(r,0,1)= %Poe“i"’ i i" cos(nOH Okr )+ H O (kr)].

n=-—oo

Rigid Body: Blocked Pressure. In analyses of scattering from elastic shells, it is useful to first
consider scattering from a rigid object of the same shape. The scattered pressure field will be

denoted PsRigid . The total pressure, which in this case is termed the blocked pressure, is then
P, =P+ P,

Since the body is rigid, the resultant fluid acceleration must have a zero component along the
normal to the boundary

Bzwfigid‘ azwi[

ot?

r=a

2

ot?

scatterer, that is, when the pressure field is identical to the incident pressure. This is given by

azw,.| _ OP|
P | " o

r=a

is the normal fluid acceleration that would be observed on the surface in the absence of the

r=a

Combining these equations gives
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2y Risid
5

ot?

_op

Po o _

r=a

The corresponding surface acceleration distribution is

0?2 ng‘d(e) P, _Zgz J! (ka)COS(ne)

ot o’ Po n=0

So,

W, = Poigni"f,; (ka).

0

Substituting these coefficients into the expressions from the Radiation Loading section gives

PR (1,6,0)= P Y. £," 28 10 )cos(6).

n=0 ’(1)( )

Thus, the blocked pressure is

= Pe ™ isni" [Jn (kr)- MH,?)(kr)] cos(n@)

n=0 H,"(ka)

or alternatively

_ laxz {H@)(kr) H,(I)g:a))Hf)(kr)Jcos(n&).

The subscript 1 corresponds to outgoing waves, and the subscript 2 corresponds to incoming waves.

n=—eo

Elastic Shell. While a rigid scatterer distorts the pressure field by interfering with the propagation of
the incident wave, the dynamic response of an elastic scatterer further modifies the pressure field.

The pressure scattered by an elastic body will be denoted PEL"’lSt The total pressure is then
PT — R + I)sElast .

It is convenient to express P as the sum of P
Feit, 1986, p. 343)

and an unknown component P. (Junger and

Elast __ pRigid
P =P +P.

To interpret P, , note that the boundary condition (on radial motion) is satisfied if

w) o
or|,_, — P ot’
aP,' _ aRTRigidl
or|,_, T or —
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The latter condition is automatically fulfilled through the definition of P,¥¢. The former condition

indicates that P, is equivalent to the radiated pressure field due to the acceleration of the elastic body

r

responding to the blocked pressure field.

We will use the Hankel function representation of the blocked pressure to allow comparison with
the results of Rumerman (1991). We therefore seek a solution in the form

P.(r6,0)= 3 AHO(kr)cos(no) ™.

n=—oo

The A, are determined from the boundary condition

Ao PV,
" kH.O(ka)

or equivalently

— iPOCOWn
" H ;(1)(ka) '
Now
_ B,
Y ZN+Z!

where the minus sign accounts for the direction of the force, and again Z, and Z, are the modal
shell and radiation impedances. Consequently,

1 1P,y i @) H;(Z)(ka) 0]
A=--P H(ka)- 2 "LHO(ka)|.
"2 %z54 77 H;(l)(ka)[ k) HO%ka) " (ka)

Thus, the total pressure field may be represented by the normal mode series

I PR o 0 LARCD)
B (r.0,1)= Fye th COS(nH{Hn (kr)~H, (kr)R"(Q’ka)H;“)(ka)
where
. _ H®(ka
zZ; (Q, ka)+ IPyCo %
H, (ka)
R (Q,ka)= O
ZS(Q,ka)+ip c M
. " 570 (a)

R, is a generalization of the plane-wave reflection coefficient, to which it reduces when ka >>1 and
ka>>n.

The denominator of R, is the modal impedance of the shell-fluid system
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;  HY(ka)
ZT (Q, ka)z Zn (Q,ka)+ 1P,Cy [{;T(ka) .

Note that the shell modal impedance may be written as

] . h 1 B’n’
Zn(Q,ka)=—zpcp;Q[1—Qz_n2—— o }

Here, Q= —Cika .

p

Rumerman (1991) expresses the total pressure field as a contour integral with n generalized to a
complex number v . This is noteworthy because the poles of the integrand are the zeroes of the

system impedance, viewed as a function of v. Since Z! is an even function of v , the poles appear
in equal and opposite pairs. There is a quasi-real pole with Re(v )z € corresponding to a quasi-
compressional wave. Another quasi-real pole with Re(v)z JQ/ B corresponds to a quasi-flexural

wave. These are generalizations of our previous results, modified by the effect of radiation loading.
However, here there is an infinity of poles v, corresponding to creeping waves. There are also

poles corresponding to the exponentially decaying quasi-flexural near-field.

<< ka , the flexural wave is very poorly coupled to the fluid

Rumerman shows that, when |VFlex

and makes an insignificant contribution to the scattered field. The creeping waves, though important
in forward scattering, decay so rapidly as they circumnavigate the shell that their backscattering

contributions are also small. Thus, if we restrict ourselves to the backscattering half-space |0] >7 X

these terms may be neglected. An additional simplification is that quite often * << 1, and when
|V| < ka , quantities relating to Z, may be accurately determined with the bending term ignored.

Therefore, we may take

s . h 1
ZV (Q,ka)z —lpCp ;Q[l —ﬁ} .

Now, in the backscattering half-space, for most or all of that space (depending on the value of ka),
the Hankel functions may be approximated by their Debye asymptotic expansions. Then,

I:Z‘f (Q,ka)— ipOCO :|_p0C0

2k o 4 .
R, (@, ka)= ;z s1: ¥ smc}/
Z; (@ ka)- Lo | PoSo
2kasin” y | siny

and

1 j!__i PoCo + PoCo

h
ZI(Q,ka)= —ipc, —Q|1-
¢ (Q.ka)=—ip " a [ Q° 2kasin®y siny

2
—n
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w/(ka)2 —v? .

where siny = .
a

The system pole v, is found by setting Z! =0. An approximate, though very accurate,

solution is found by letting sin} =1

. * _1
VY o LN § PRI PELIN |
ka p h 2ka

We, of course, are interested in values of ka where v, is quasi-real and an integer. That is, we

want Ve, = n(l+i6) with '5| << 1. Here,

C
’ (ka)2+(£°—£
ph
&a
1 ka ph
5~2 2 2
(ka) +| 202
ph

Note that these conditions cannot be satisfied by n=0. The n =0 mode does not couple to the fluid
and may be ignored (Rumerman, 1993). More fundamentally, an imaginary part of the root is needed

to couple to the fluid (Rumerman, 1992). For typical values of the parameters, the condition |§ | <<1

is satisfied if ka >3/2. A check shows that siny = ,/1— (c0 e p)z =1, as was earlier assumed.

Oblique Incidence

Let us now consider a plane acoustic wave obliquely incident upon an infinite cylindrical shell in
a fluid

P(r,6,2,t)=P, expli(kr cos6 cos ¢ + kzsin g — awt)]

where ¢ is the angle of incidence (with respect to the normal). This problem is formally identical to
that of normal incidence through the replacement of k by K =kcos¢ (or of the sound speed in the
fluid c, by c¢,/cos¢ ). However, the resulting behavior has significant differences (Rumerman,

1992). These are that an obliquely incident wave may excite two kinds of membrane modes on the
shell, while only one is excited at normal incidence, and that each of these modes is a supersonic
wave only within a range of angles about normal (and evanescent elsewhere).

The incident pressure may be expressed as
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P(r,0,2,t)= %Poei(k’"z“”) ii" cos(nH){H,fl)(Kr)+ H,Sz)(Kr)]

n=—oco

so that the blocked pressure is

P, =%I’()ei("mz_“’)n§wi" cos(ne{H,?)(Kr)————Z: (Iliz)H(l)(K—r)}

where we have defined an axial wavenumber k, =ksin¢ .

In a manner analogous to that used in the previous section, the total pressure may be represented
by the normal mode series

P (6.2.0)= LRt 3 i cos(ut) BOEr)- HO @R, (@ kap) e K2
TV V4 2 0 n n n ’ ’ H;(l)(Ka)

n=-—oo

where

@)
z:@.k,a)+ i 2o Ho (Ka)
cos¢ Hn( )(Ka)

O(Ka)
z:@.kya)+ i 2o Hy (Ka)
cos¢ H'V(Ka)

Rn (Q’ ka’ ¢) =

The modal system impedance is

0
Z, @ ka,k,a)=Z: @k a)+i Lo Hn (Ka)
cos¢ H,"(Ka)

The total pressure may be expressed as a contour integral (Rumerman, 1993). As before, the poles
<< ka, the flexural wave is very poorly

appear in equal and opposite pairs. Here too, when |VFlcx
coupled to the fluid. If we again restrict ourselves to the backscattering half-space |0' > /2, the

creeping wave contribution may be neglected.

We will again ignore the bending terms in the modal shell impedance (Rumerman, 1993) which
may be written as

4 2
Zj(Q,kma)_—._i[pcl’ _h_} Aglkna)’ +By(k,a) +Cy

Q a|D,(k,a) +E(k,a) +F,
with
PRIE 3-SR
B, =(1-o Q> —1—;9—@2[92 ~1]-@?[0? - (- 6?))
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Recall that Q = c—(’ka .

Cp

We may use the Debye expansions to approximate the generalized reflection coefficient as

Z;@k,a)- P | P
2Kasin” ycos¢ | sinycos¢

Z;@k,a)- Do |, _Po%
2Kasin” ycos¢ | sinycos¢

R, (Q,ka,p)=

with ¥ = cos™ (KL) The modal system impedance is
a
/

IP,C, 4+ Po%
2Kasin® ycos¢ sinycos¢

ZI(Q,ka,k,a)=Z:(Q k,a)-

Here we will not be able to make the simplifying approximation sin} =1 to find the poles.

Instead, replace v with Kacos?} , then replace cos® ¥ with 1-sin” y, and solve for sin} . This
} 14 4 7

yields six independent solutions, most of which are discarded because they violate the Debye

expansion criteria. The two valid solutions are denoted } ¢, and }g,,, - The corresponding poles

are Vo, = Kacosjyc,,, and vg,, = Kacosyg,, . Rumerman (1993) discusses the typical

behavior of these poles for kacos¢ >3/2. When ¢ < @, =sin - (c0 / c, ), V comp 18 ssentially real

(with a small imaginary part) representing a supersonic wave. When ¢ > @¢,..» Vo, 1S €ssentially

imaginary (with a small real part) representing an evanescent mode. Similarly, when
P < P, =sin" (co /¢, ), Vg is essentially real representing a supersonic wave, and when

@ > G » Vsnear 18 €8€Ntially imaginary representing an evanescent mode.

Since

J&2 —k2 )% —v?
Jk* —kla

siny =
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NS

cos¢p = ————",
¢ k

the modal radiation impedance may be expressed as

1 G s }

Z:(ka,kma)z pocoka{\/(kz —ki)ﬂz —y? _El [(k2 —k::)az —VZ]Z

Thus, the zeroes of the modal system impedance may be found from

i ﬁ}[(kuk;)az-vz]Z[ARo«,,,a)‘*+B,e<kma)2+CR]+

o:-{
Q a

[pocoka]{[(k2 —k,i )12 _V2]3/2 —%i(kz _kri)lz}[l)k (kma)4 +Eg (kma)2 + FR]'

Note that, if k,, = 0, this becomes

0= —i[-’giﬂ[(ka)2 v fo’le? —1—v2{92 —1:2—“—1/2] +

[pocoka]{[(ka)2 —vz}/z ——;—i(ka)z}[!!2 —VZ{QZ _1:221/2] :

C

s

f 2
Then, vg,, = -I—Q =S4 is purely real. The associated membrane mode has purely in-plane
-0

motion that does not couple to the fluid (Rumerman, 1992). It may, therefore, be disregarded. Now,

2

1 4 . . .

1- (k—J =1, and the previous result for v is retrieved.
a

The equation for the zeroes of the modal system impedance must be solved numerically, and is
tedious. Figure 20 shows the first five compressional and shear modes when a =3 m, £ =0.05m,

p =7800kg/m’, 0 =0.3, E =2.04x10"N/m?, p, =1000 kg/m’, and c, =1500 m/s. Here,
¢, =5360m/s and ¢, =3170m/s, so @, =16.3° and g, =28.2°.
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Figure 20. Example of dispersion curves as functions of frequency
and incident angle.

AMPLITUDE

Rumerman (1993) has shown that, by use of a Sommerfeld-Watson type transformation, the
scattered field may be expressed in terms of a series of axial modes having coefficients that are
waveforms in the circumferential direction. The remainder of the field is taken as a “geometric”
contribution.

P(R.6,4)=P% +P*
where (R, 6, ¢) are the spherical coordinates of the observation point.

We are interested in the wave component of the scattered field. In the far field, this may be
evaluated using the method of stationary phase. For simplicity, the details will be omitted. The
backscatter result is

M M,
PW (Ra ”:"¢inc )= PO pa)a i eth I:Z (—- i)mrrs:.) + Z (— i)mri(:):l
K ine? R m=1 m=1

mne

where the parenthetical superscripts distinguish between the compressional and shear contributions,
and M, is the largest integer not exceeding (1+Q)L/x while M, is the largest integer not
exceeding (1 +aa/c,)L/x . Here, the normalized length L = L/a. Recall that K, .a = kacosg,,.
The parameters associated with the incident field have been explicitly called out for clarity. The
coefficients I'Y) are given by
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F(j) — T,B,,,v Sajmv - SﬂmVthmcv eiaimz' . ei“mz 1— e—im;r+iajwiz 1 y
" TgvSaw =Spul. zZ' Qe )| mr-a L | . da,
B.v: a,v B.via,v v inc inc sin (V]Z') y

l: e—ZiKinca(sin 6,~8, cos3, ) :'
sind,,

Here, a,, and f3,, are the two linearly independent nondimensional axial wavenumbers in the

membrane range (for brevity, the superscripts j have been omitted), ;. = kasing, , and
cosd, =v/ (K ..a). The parameters S and T are normalized displacements and stresses. Their

detailed expressions are not needed in what is to follow.

A particular mode will contribute strongly to backscattering if two conditions are satisfied. The
first is that Re(vm ) is approximately equal to an integer and Im(vm )<< 1. This condition is

independent of the angle ¢, = and signifies the mode is close to resonance at the frequency

inc
considered. The second condition is that &, = kasin g, is approximately equal to ¢,,. This

indicates the axial variation of the projection of the incident plane wave on the shell is close to the
axial variation of the mode shape.

Because Z! (Q,&, )=0 forv =v,,, Z Q. )= (@, -, )2 (Q,c,) when ¢, =@,
where the prime denotes differentiation with respect to «,, . In addition,
Z7(Q,a, Xde, /dv)=-ZT (Q,a,, ) where the dot denotes differentiation with respect to v .

Therefore when o, =~ a,,

matiog L |° -
r‘(]) ~ TﬁmvSaimV B SﬂmvTaim:V 1 - e_lm” liL (_ lynL x
m Ty Sey =S5 T, | mr—a, L ||sin(z)Z] (Q.a,)

Bav® ayv

|'e—2iKma(sin O, —0,, cOs 0, ):'
sin g,

The quantity in the second set of brackets is a directivity function of that mode. If the angular
width of the mode is less than the angular distance to the adjacent modes, the peak level of a resonant
mode can be estimated ignoring other contributions. Rumerman uses the following relationships.

When @, = a,,, the quantity in each of the first two sets of brackets is equal to unity. For Re(v,,)

an integer n,

sin(zv, )=i(-1) sinh[zIm(v, )]= i(-1)' #Im(v,, ).

The wavenumber pair (a,,,V,, ) is a joint solution of 0= Z! (Q,e,, )= Z;(Q.a, )-iX] +R],
where X is the reactive component of the radiation impedance and R; is the resistive component.
The shell impedance has been taken to be completely reactive. At high frequencies, where the shell
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impedance generally dominates the radiation impedance, v,, may be approximated by v, +iv,,

where v, is the real root of 0 =Z (Q, a, )— iX,. The imaginary component may be found from

0=2/Qe,)=2Z] Qa,)+iv,Z, Qa,)=R, +iv,Z} Q.a,).
Therefore, v, =i R, /ZVTR , where R, = pan/(K,.asind) with cosé =v,/(K,.a)and 6 =6,

for the mode considered.

Upon combining these results, the pressure amplitude backscattered by an isolated resonant mode
into the angle at which it is traced-matched with the incident wave may be found. It is simply

al
PR, 7~ )= F——.
P (R 7~ ) = B~
Obviously, this expression is not valid for arbitrarily long shells. A limiting value, independent of
length, should be reached as L —> oo. This limit can be determined from the transformed expression

by noting that it represents the scattered field as a series of axial modes. When L is very large, the
modal density is very high, and no one mode has any significance. The solution must be obtained by

summing over all modes. As L — oo, mﬂ'/ L may be thought of as a continuous variable and the
summation approximated as an integral over this variable. The integral itself can be approximated by
noting that the integrand has singularities at values of the integration variable at which v, is an
integer n. The magnitude of the backscattered pressure due to the circumferential mode of order n,
and for o, = Re(a, ), is approximately (Rumerman, 1993).

) _p2_ 2%
Poo R0} = B iy
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MODELING ISSUES
APPROXIMATE SOLUTIONS OF THE DISPERSION EQUATION

Formulation

Recalling our results from the section “Forced Vibrations When £ = 0,” the system impedance in
that case is

P, b QP -AQ'+AQ-A,

Zm =i Z[QZ_I‘T"(ksa)Z}[ff‘("f“)z]

mn

+Z, ..

The dispersion equation Z. =0 may be written as

0= [92 -(zrcsa){sz2 —I"T"(ksa)z}[g2 +i Q“h z,;,,}

4

et +1_TG[Q2 (k,af +20+0)k,a) - (l—szkma)q

where again k. a = 1f(kma)2 +n”® and k, =ksing .

When £ # 0, the dispersion equation has a very similar form (Guo, 1994)

o- bty [or- oy | 0t gy o 2z |

p

—Q4+-1—_2—o-—[£22(ksa)2 +20+0Xk,af (-0 Yk,a)].

Note that in the high-frequency limit, the roots of this equation are given by the three bracketed terms
on the first line.

We will follow Guo’s approach (Guo, 1994) in taking these high-frequency limits as leading order
terms, and seek corrections to extend the solutions into the mid-frequency region. Let

(ksa)2 (kma)2 +n’
5 = Qz = QZ
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The dispersion equation then takes the form

D (§)+ D,()=0

where £ is the quantity to be determined and the functions D, and D, are-given by

D,E)=l- { -1 g - 1-iaz,

D, (€)= 1—-——A——(§ Ao +3-(-0Je-A))

2
with
p=prer
P
ph
" poco ka

It may be seen that the problem has been contrived in such a way as to suggest solutions of the form

E=6torbit

Although this takes the nominal form of an inverse power series in frequency, the final results will
not have such a form because the frequency parameter also appears in D, through both ¢ and z,,, .
These will be taken as fixed in applying the expansion. As Guo points out, a strict inverse power
series in frequency is not a suitable solution for cases of fluid loading because the roots are generally
complex with real parts many orders of magnitude larger than the imaginary parts. An inverse power
series expansion would require a large number of terms in order to obtain the first non-zero
imaginary part.

In finding the roots corresponding to shear and compressional waves, 4 and z,, are assumed to
be unaffected by the expansion. The reason for keeping # constant is purely for convenience. It is
always much smaller than unity, under the constraint of thin-shell theory, and consequently, makes a
negligible contribution to the roots. The reason for keeping z,, constant is subtler. It is because

Z,,, 18 the term accounting for fluid (radiation) loading, and hence, the only term that gives the roots
imaginary parts. Keeping z,,, in D, will allow us to find the complex roots with only one
correction term. This does not contradict the use of the expansion above, because z,,, is of order

1/ Q, as may be seen from its definition and our previous analysis. Therefore, if an expansion is

begun at the order 1/ Q?, z, . should be included in the leading-order expression.
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For flexural waves, these arguments do not hold. Here, the dominant efféct of fluid loading is
added mass with little radiation. z,, contributes predominantly to the real part of the roots. In fact,

in the frequency range of interest, the roots for flexural waves are purely real. Consequently,
expansion of z, in terms of frequency is required. Since flexural waves make a negligible

contribution to the scattering problem, we will not pursue their study.
To continue the analysis, we substitute the expansion into the recast dispersion equation, and
group terms of like powers (after expanding D,, in a Taylor series). To order 1/ Q? | this leads to

solutions of the form

_ 1 D)
Q* Dj(&,)

where the prime denotes differentiation with respect to the argument and &, are the high-frequency

é:zgo

limits. It may be seen that

Dy(E,)= 2#50[50—1][1—‘—2—‘-’—50—1}&[5;_1_,-%]{1‘7"50_1}

}%g-hgg_l_lazmn 0_1]

and

Zmn(g())z ——i 2

Note that this differs from Guo’s expression.

Compressional Waves

The leading-order solution for compressional waves is

Go =1.

Here,
, 1+0 )
DO(&O).:—T[IU—I_laZmn
1+o0
D1(§0)=7[0'+(1_0—)A]2
so that
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___1__[0'+(1—-o-)A]2
Qr p-l-ioz,,

E=1+

In terms of the axial wavenumber, this may be rewritten as

(kaf =2{1-2_ 4+ L

with

Figure 21 shows a comparison with the results of Rumerman’s formulation. The parameters are
the same as before. As can be seen, the differences are minor and are so for most practical problems.
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Figure 21. Comparison of approximate and “exact” solution for
compressional modes.
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Shear Waves

The leading-order solution for shear waves is

2
502;_‘0—-
Here,
i6)=2 5 - 0-0F - fil-oF s, |
DI(.fO):—(l—O’z)/\I:l—%(l—O')A}
so that

1 3 1
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This may be rewritten as

(&, )2— {1——(1 o')——jl T %(1_0)4%

2
Q ﬂ—i(l—a)z[lﬂazm]

with

Note that k,, =0 when

This is the cutoff frequency for shear waves. In fact, it is the exact cutoff condition that can be
derived directly from the dispersion equation.

Figure 22 shows a comparison with the results of Rumerman’s formulation. The differences are
insignificant.
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~ Figure 22, Comparison of approximate and “exact” solution for shear
modes.
MODAL WIDTHS

Previously, we had noted the axial modal directivity function

(1
Il e |2 Sln[—ilj

ERNE

2

B(x)=

where

y=mn—-kasing, L .

As defined, B is an even function in y and B(0)=1. Note that B = V2 /2 when Ay =2.004.
The axial modal half-width is therefore A(kasing, )=Ay/L . We will later see that taking
Ay =1.00 gives better agreement with observations.

The circumferential modal directivities may be characterized in terms of parameters

2
£ =0, /1—;;2 ~ kasing,,

n?+o?

;czgc 1- Qz —'kaSin¢inc .

[+
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The circumferential modal half-widths are then A(ka sing, . )=A{ . Here, we do not have an

explicit directivity function. For convenience, we will take the directivity to be unity over the modal
width and zero otherwise. We will later see that taking A{ = 0.25 produces behavior in reasonable

agreement with observations.

AMPLITUDE

Our previous results for the backscattered pressure amplitude, when traced-matched with the
incident wave, may be summarized as

al - 2
PR, m,~¢, )= P ——min| L,———| .
P& 70, ‘Rn [ ]Im(anJ
This obviously ignores the transitional behavior. Im(an ) cannot be expressed in a simple manner.
However, in the regime of interest, Im(an )e< n(Rumerman, 1992 and 1993). The ka dependence is

less apparent. From our earlier results, we would expect

Im(x, )~ +/ (kacosp) +(p,a ph)2 kacos¢ . For typical problems, a good fit is
n 0

2
\/(kacosgz))z +[£°—%)
fm(, )= 0.366 L1 P,
Po a kacos¢

It is important to note that, in practice, these peak levels are not observed. There are a number of
reasons for this. The primary one has to do with the shell termination. Caps modify the coupling of
the incident wave with the shell modes. Stiffeners will as well. Typically, the modal structure is not
significantly altered, but the backscattered levels are reduced by some coupling efficiency factor.
This factor is usually in the range of 0.6 to 0.8.

EXAMPLE
Let us consider the example used by Rumerman (1993) where a/h =100, ¢ » / c, =35,

P/p, =7.8,and 0 =0.3. The model we have presented produces the results shown in figure 23.

The color scale represents the target strength in decibels. This may be compared with Rumerman’s
figure 3 (data) and figure 7 (predictions). The qualitative agreement is very good. Given the
uncertainties involved, the quantitative agreement is good. Rumerman explains the reasons for many
of the discrepancies. Figure 24 shows the response over a wider bandwidth.
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Membrane Waves
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Figure 23. Predicted response for the example given by Rumerman (1993).
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Figure 24. Predicted response over a wider bandwidth.
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SUMMARY

We examined the modeling of shell membrane waves and provided detailed theoretical
background, both to serve as a primer for those unfamiliar with the subject and to set the context of
the model presented. We discussed the nature of the various assumptions and made comparisons of
the predicted behavior with “exact” numerical solutions, as well as with experimental data. The
qualitative agreement was excellent. Quantitative agreement was good, given the uncertainties
involved, as well as sensitivity to boundary conditions.
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